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Abstract

The study addresses problems of moving boundaries that involve mass diffusion in a spherical swelling polymer-pen-

etrant system with a controlled release of drug. The method of perturbation is applied and the complete time history of

the penetrant front and the volume expansion front are determined for small control values of e; the local similarity
method is used to expand the results for large e. The results reveal that the velocity of penetrant and the release rate
of the drug near t* = 0 are constant, regardless of the diameter of the sphere. The velocity and rate decrease over a short

period, and then increase again as the penetrant front proceeds to the sphere center. If e and �v are small, the volume
expansion front is almost unchanged and only the time history of the penetrant front in the swelling polymer-penetrant

system needs to be considered.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

When a glassy polymer is exposed to a penetrant sol-

vent, which can be gas or liquid, the solvent diffuses into

the polymer to form a glassy–rubbery interface that

moves through the polymer. In 1966, Alfrey et al. [1]

indicated that in polymer-penetrant systems, the motion

of the penetrant front is a function of time that differs

significantly from the classical function of t1/2 associated

with Fickian relaxation. Various theories or equations

of motion are needed to describe accurately the diffusion
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in individual polymer-penetrant system, according to the

type of polymer, the type of penetrant and the ambient

conditions.

For some polymer-penetrant systems, however, rela-

tively slow molecular relaxation occurs only at or near

the glass/rubber interface, while instantaneous Fickian

diffusions occur in both glassy and rubbery regions. In

such systems, a local driving force, associated with dif-

ferences between concentrations of the solvent, domi-

nates the motion of the interface. Astarita and Sarti

[2], and Andreucci and Ricci [3] developed mathematical

models of the sorption of swelling solvents in glassy pol-

ymers and considered the kinetics and driving force of

swelling. Cohen [4,5] analyzed problems related to diffu-

sion in glassy polymers and employed an integral

approximation to study the motions of the penetrant

front and glass-gel interface. Cohen and Erneux [6]
ed.

mailto:jsenlin@nuu.edu.tw 


Nomenclature

A(t*) arbitrary function of t* in Eq. (35)

A*(t*) arbitrary function of t* in Eq. (41)

B(r, t) drug concentration

B0 constant concentration of drug

C(r, t) solvent concentration

C0 solubility of the solvent in the swollen

polymer

C* threshold solvent concentration

C C* + K

D diffusion coefficient of the solvent

Dd diffusion coefficient of the drug

k1, k2 phenomenological quantities

K k2/k1
m drug release rate

n phenomenological quantity

r penetrant front and volume expansion front

r* dimensionless penetrant front and volume

expansion front

ri initial penetrant front and volume expan-

sion front

r�i initial dimensionless penetrant front and

volume expansion front

Ri penetrant front

R�
i dimensionless penetrant front

Rf volume expansion front

R�
f dimensionless volume expansion fronteR�

R�
i =r

�
ieR�

f R�
f =r

�
i

t time

t* dimensionless time

u dimensionless solvent concentration

v dimensionless drug concentration

�v molar volume of the swelling agent

X(t*) constant function of t* in Eq. (45)

X*(t*) constant function of t* in Eq. (46)

e control parameter
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considered the diffusive behavior of the penetrant front

through the polymer under the limiting conditions that

the time is approximately zero or infinity; they com-

pleted the time evolution of the penetrant front using

perturbation technique with a small control parameter.

In so-called ‘‘case II diffusion’’, sharp concentration

fronts often move with constant speed [7,8]. Guidotti

[9] and Guidotti and Pelesko [10] studied the transient

instability and free boundary conditions in case II diffu-

sion. Higuchi [11,12] formulated models of the release

rate of a solid drug by diffusion through a polymer,

obtaining results for planar surfaces and spherical pel-

lets. Peppas et al. [13] considered drug initially uniformly

distributed in a polymeric matrix and determined the

drug concentration profile within the polymer and drug

release rates due to swelling. Lin et al. [14] further con-

sidered the swelling controlled release of a drug and sol-

vent transport systems. They simulated these processes

using a local similarity algorithm. The transport phe-

nomenon in a spherical polymer-penetrant system has

been studied with reference to inward diffusion [15],

but without considering the volume expansion front.

This study considers the simultaneous swelling con-

trolled release in a spherical polymer matrix of a dis-

solved drug and the swelling solvent. Accordingly, the

volume expansion of the polymer enables, both a

glassy–rubbery interface and a moving boundary to be

formed at two locations. The perturbation method and

a numerical treatment of local similarities are employed

to investigate the complete time history of these bound-

aries with various parameters.
2. Mathematical model of spherical polymer-penetrant

system

This work investigates the diffusion of a drug in a

swollen polymer, when the drug is added to a penetrant

solvent. The drug is considered to be dissolved within

the polymer matrix but not able to diffuse through the

matrix. When the penetrant solvent starts to diffuse into

the polymer, the drug simultaneously begins to diffuse

through the swollen part of the polymer. Hence, the re-

lease rate of the drug is determined by the rate of diffu-

sion of the solvent in the polymer. The volume

expansion of the swollen polymer is considered to enable

the movement of both the polymer surface and the pen-

etrant front throughout the matrix. Fig. 1 shows the

physical concentration profiles of the drug (full line)

and the solvent (dash line) problem in the spherical sys-

tem. B and C represent the drug concentration and sol-

vent concentration, respectively. The diffusivity D of the

swollen polymer is taken to be constant. C0 is the solu-

bility of the solvent in the swollen polymer. B0 is the

constant concentration of the drug which is initially

loaded and maintained in the solvent-free matrix. Fig.

1 includes two moving fronts. One at r = Ri(t) separates

the solvent-free polymer from the swollen polymer. The

other at r = Rf(t) is associated with the volume expan-

sion of the polymer due to its gradual swelling. The

polymer surface is initially located at Ri(0) = Rf(0) = ri.

The diffusions of the drug and solvent are formulated

as a one-dimensional spherical moving boundary

problem for the concentration B(r, t) of the drug, the
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Fig. 1. Physical configuration of the spherical swelling-control-

led release system.
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concentration C(r, t) of the penetrant, and the position

r(t) of the interface:

oC
ot

¼ D
1

r
o
2ðrCÞ
or2

� �
RiðtÞ < r < RfðtÞ ð1Þ

C ¼ C0 > C� at r ¼ RfðtÞ ð2Þ

ðC þ KÞ dRi
dt

¼ �D
oC
or

at r ¼ RiðtÞ ð3Þ

dRi
dt

¼ �k1ðC � C�Þn at r ¼ RiðtÞ ð4Þ

oB
ot

¼ Dd
1

r
o2ðrBÞ
or2

� �
RiðtÞ < r < RfðtÞ ð5Þ

B ¼ 0 at r ¼ RfðtÞ ð6Þ

ðB� B0Þ
dRi
dt

¼ �Dd
oB
or

at r ¼ RiðtÞ ð7Þ

R3f ðtÞ � r3i ¼ 3�v
Z Rf ðtÞ

RiðtÞ
Cðr; tÞr2dr ð8Þ

Rið0Þ ¼ Rfð0Þ ¼ ri; ð9Þ

where k1, K, D, C*, and C0 are constant parameters. The

first four are material parameters; the latter is the system

parameter. The parameters K, k1, and n are phenomeno-

logical quantities, which can be obtained experimentally.

Eq. (1) represents Fick�s law for a one-dimensional sys-
tem and Eq. (2) describes the associated boundary con-

dition at the surface. Eq. (4) represents the local kinetics
that drives the penetrant front at some finite rate. Eq. (3)

states the mass balance at the moving interface. The flux

across a moving boundary of the swelling region is given

by �DoC/or � CdRi/dt and is assumed to be propor-
tional to the flux generated by the interface region.

Hence, we have

�D
oC
or

� C
dRi
dt

¼ k2ðC � C�Þn at r ¼ RiðtÞ ð10Þ

Substituting Eq. (10) into Eq. (4) yields Eq. (3),

wherein K = k2/k1. D and Dd are dimensional diffusion

coefficients of the solvent and drug, respectively. Eqs.

(5)–(7) represent the diffusion of the drug in the swollen

polymer. The volume change of the polymer due to

gradual swelling and the initial condition are expressed

by Eqs. (8) and (9), respectively, where �v is the molar
volume of the swelling agent.

Eqs. (1)–(9) can be rendered dimensionless using the

following dimensionless variables:

t� ¼ t
a

u ¼ C � C�

C0 � C� v ¼ B
B0

r� ¼ r
b

r�i ¼
ri
b

R�
i ¼

Ri
b

R�
f ¼

Rf
b

ð11Þ

a ¼ DðC0 � C�Þ1�2n

Ck21
b ¼ DðC0 � C�Þ1�n

Ck1
C ¼ C� þ K

The following equation hold.

ou
ot�

¼ 1
e
1

r�
o2ðr�uÞ
or�2

� �
R�
i ðt�Þ < r� < R�

f ðt�Þ ð12Þ

u ¼ 1 at r� ¼ R�
f ðt�Þ ð13Þ

ð1þ euÞ dR
�
i

dt�
¼ � ou

or�
at r� ¼ R�

i ðt�Þ ð14Þ

dR�
i

dt�
¼ �un at r� ¼ R�

i ðt�Þ ð15Þ

ov
ot�

¼ Dd
D
1

e
1

r�
o2ðr�vÞ
or�2

� �
R�
i ðt�Þ < r� < R�

f ðt�Þ ð16Þ

v ¼ 0 at r� ¼ R�
f ðt�Þ ð17Þ

eðv� 1ÞdR
�
i

dt�
¼ �Dd

D
ov
or�

at r� ¼ R�
i ðt�Þ ð18Þ

R�3
f ðt�Þ � r�3i ¼ 3�vC2

Z R�
f
ðt�Þ

R�
i
ðt�Þ

C�

C
þ eu

� �2
dr� ð19Þ

R�ð0Þ ¼ R�ð0Þ ¼ r� ð20Þ
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where e is a control parameter defined as

e ¼ C0 � C�

C
ð21Þ

The parameter C* is the threshold concentration for

swelling and, therefore, the parameter e must be greater
than zero to ensure movement of the interface.
3. Perturbation method

Solving the moving boundary problem analytically is

very difficult. Therefore, an asymptotic solution to the

system is considered. In this section, the perturbation

method is used to describe the complete time history

of the penetrant and the volume expansion fronts as

the limit e approaches zero. The asymptotic solution to
these equations is assumed to be

uðr�; t�; eÞ ¼ u0ðr�; t�Þ þ eu1ðr�; t�Þ þ � � � ð22Þ

vðr�; t�; eÞ ¼ v0ðr�; t�Þ þ ev1ðr�; t�Þ þ � � � ð23Þ

R�
i ðt�; eÞ ¼ R�

i0ðt�Þ þ eR�
i1ðt�Þ þ � � � ð24Þ

R�
f ðt�; eÞ ¼ R�

f0ðt�Þ þ eR�
f1ðt�Þ þ � � � ð25Þ

Substituting Eqs. (22)–(25) into Eqs. (12)–(20) and

equating to zero the coefficients of each power of e yields
the following equations for u0 and v0:

1

r�
o
2ðr�u0Þ
or�2

� �
¼ 0 R�

i0ðt�Þ < r� < R�
f0ðt�Þ ð26Þ

u0 ¼ 1 at r� ¼ R�
f0ðt�Þ ð27Þ

dR�
i0

dt�
¼ � ou0

or�
at r� ¼ R�

i0ðt�Þ ð28Þ

dR�
i0

dt�
¼ �un0 at r� ¼ R�

i0ðt�Þ ð29Þ

1

r�
o2ðr�v0Þ
or�2

� �
¼ 0 R�

i0ðt�Þ < r� < R�
f0ðt�Þ ð30Þ

v0 ¼ 0 at r� ¼ R�
f0ðt�Þ ð31Þ

ov0
or�

¼ 0 at r� ¼ R�
i0ðt�Þ ð32Þ

R�3
f0ðt�Þ � r�3i ¼ 3�vC�2ðR�

f0 � R�
i0Þ ð33Þ

R�
i0ð0Þ ¼ R�

f0ð0Þ ¼ r�i ð34Þ

The solutions to Eq. (26) with boundary condition

(27) is

u0ðr�; t�Þ ¼ 1þ Aðt�Þ 1

r�
� 1

R�
f0

� �
ð35Þ
where A(t*) is an arbitrary functions of t* determined by

Eqs. (28), (29), and (34). Substituting Eq. (35) into Eqs.

(28) and (29) enables A(t*) to be eliminated and the fol-

lowing ordinary differential equation obtained for Ri0
and Rf0;

dR�
i0

dt�
¼ � 1þ R�2

i0

dR�
i0

dt�
1

R�
i0

� 1

R�
f0

� �� �n
ð36Þ

If n = 1, integrating Eq. (36) yields

R�
i0 � R�

f0 þ
1

2
ðR�2
i0 � R�2

f0Þ �
1

3R�
f0

ðR�3
i0 � R�3

f0Þ ¼ �t� ð37Þ

If e is sufficiently small, then the positions of the pen-
etrant front and the volume expansion front over a long

period are given by Eqs. (33) and (37) using Newton–

Raphson iteration with initial conditions R�
i0ð0Þ ¼

R�
f0ð0Þ ¼ r�i . If the radius of sphere is large enough, the
interface moves through the polymer at a constant

velocity for small times. Thus, the position of interface

is proportional to t* (i.e. R�
f0 � R�

i0 ¼ t�), in a manner
consistent with a planar system [6].

Next, the problem with v1(r*,t*), which is described

as follows (since v0 = 0, obtained from Eqs. (30)–(32)),

is considered.

1

r�
o2ðr�v1Þ
or�2

� �
¼ 0 R�

i0ðt�Þ < r� < R�
f0ðt�Þ ð38Þ

v1 ¼ 0 at r� ¼ R�
f0ðt�Þ ð39Þ

dR�
i0

dt�
¼ Dd

D
ov1
or�

at r� ¼ R�
i0ðt�Þ ð40Þ

From Eqs. (38) and (39),

v1ðr�; t�Þ ¼ A�ðt�Þ 1

r�
� 1

R�
f0

� �
ð41Þ

where A*(t*) is an arbitrary function of t* determined

by Eq. (40).

A�ðt�Þ ¼ � D
Dd

R�2
i0

dR�
i0

dt�
ð42Þ

Substituting Eq. (42) into Eq. (41) yields, the concen-

tration of the drug

vðr�; t�Þ ¼ �e
D
Dd

1

r�
� 1

R�
f

� �
R�2
i

dR�
i

dt�
ð43Þ

The asymptotic solution for the drug release rate at

small times is

m ¼ � ov
or�

� �
r�¼R�

f

¼ �e
D
Dd

R�
i

R�
f

� �2
dR�

i

dt�
ð44Þ

The drug release rate thus depends on the control

parameter e, the radius of sphere, the diffusion coeffi-
cients of the solvent and drug, and the velocity of

penetrant.
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Fig. 2. X for various time steps (e = 1, �v ¼ 1, n = 1, r�i ¼ 5). (—)
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4. Method of similarity solution

This section proposes a method for numerically solv-

ing the moving boundary problem (Eqs. (12)–(20)). A

local similarity solution can be applied to the spherical

polymer-penetrant system as follows;

uðr�; t�Þ ¼ X ðt�Þ
r�

erf
R�
f � r�

2
ffiffiffiffiffiffiffiffiffiffi
e�1t�

p
� �

þ R�
f

r�
ð45Þ

and

vðr�; t�Þ ¼ X �ðt�Þ
r�

erf
R�
f � r�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�1t�Dd=D

p !
ð46Þ

which equations automatically satisfy the boundary con-

ditions (13) and (17), respectively. Eqs. (45) and (46) are

exact solutions to diffusion equations (12) and (16),

respectively, only if X and X* are constants. However,

the parameters X and X* satisfied the boundary condi-

tions are not constants herein. A numerical technique

can be used to obtain the penetrant and volume expan-

sion fronts in which X and X* are piece-wise constants

during an interval (t�i�1, t
�
i ). t

�
i�1 and t�i represent the

(i � 1)th and ith specified times. The small interval is
chosen to reduce the errors result from the numerical

calculation. In the numerical simulation, the diffusion

coefficients D and Dd are equal under the specified con-

ditions C* = 0.08 and k2/k1 = 1.

The procedure for numerical calculation is as follows.

(a) Locate of the initial penetrant front and volume

expansion front at R�
i ð0Þ ¼ R�

f ð0Þ ¼ r�i and set the
initial velocity dR�

i ð0Þ=dt� ¼ �1.
(b) Substitute Eqs. (45) and (15) into Eq. (14) to obtain

a nonlinear equation for X which is solved by New-

ton–Raphson iteration.

(c) Integrate the position of the penetrant front, R�
i

obtained from Eq. (15) using Runge–Kutta integra-

tion after determining X.

(d) Substitute Eq. (46) into Eq. (18) to calculate the val-

ues of X* and the drug release rate m.

(e) Calculate the position of the volume expansion

front from Eq. (19).

(f) Obtain the diffusion region between the penetrant

and the volume expansion boundaries in the subse-

quent time step.

Repeating steps (b) to (f) yields the complete time his-

tory of the penetrant and volume expansion fronts.
0.00 2.00 4.00 6.00 8.00 10.00
t*

-80.00

-60.00
ε =0.01

Fig. 3. X for each time step for different e (n ¼ 1, r�i ¼ 5).
5. Results and discussion

The time step in the numerical simulations must be

appropriately chosen to ensure accuracy. Shorting the

time step increases accuracy, but also increases comput-
ing time. A smaller time step should be used for simula-

tion for short times because of the penetrant has a high

velocity, while larger time step can be used in simulating

a long-term behavior. Fig. 2 shows the effect of the time

step on the constant X. The efficient computational pro-

cedures involve the time steps 0.001 for t* < 0.5 and 0.01

for t*P 0.5. Fig. 3 presents the computated constant

X(t*) for various control parameters e.
From Fig. 4, when the radius of sphere is large en-

ough, the numerical results approach those of a planar

system, as studied by Cohen and Erneux [6]. Fig. 5 com-

pares the numerical simulations with the asymptotic

solutions with various e. Both the asymptotic solutions,
described in Section 3, and the numerical results for the

positions of the penetrant front are almost the same
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when e is very small. However, the asymptotic method
cannot describe the time history behavior for large val-

ues of e.
Fig. 6 displays the complete time histories of the pen-

etrant front and the volume expansion front for n = 1

and r�i ¼ 5 under different e and �v. According to this fig-
ure, the small e leads the penetrant front to reach quickly
the center of sphere while the volume expansion front re-

main almost unchanged, as revealed in Table 1. Figs. 6

and 7 show the effect of parameters �v on the penetrant
and volume expansion fronts is shown in. The effect of

the small parameter �v on the volume expansion front
0.00 4.00 8.00 12.00 16.00
t*

0.00

1.00

2.00

3.00

4.00

5.00

R
 i *

ε =1

ε =0.1ε =0.01

Fig. 5. Complete time histories of the position of the penetrant

front R�
i with different e (n = 1, �v ¼ 0:1, r�i ¼ 5). (m) asymptotic

solutions from Eqs. (33) and (36) by the Newton–Raphson

method.

(b) 

Fig. 6. Complete time histories of the positions of the penetrant

front, R�
i , and the volume expansion front, R

�
f , for different e; (a)

�v ¼ 0:1 (b) �v ¼ 1 for n = 1 and r�i ¼ 5. The lower and upper lines
represent R�

i and R�
f , respectively.
is similar to the effect of the small parameter e on this
front. Hence, the movement of the volume expansion

front can be ignored at small e and �v.
Figs. 8 and 9 depict the complete time histories of the

penetrant front and volume expansion front, respec-

tively. When r�i , which specifies the initial position, is
large enough, the volume expansion front swells out-

ward quite slowly. Thus, the effect of large r�i on the vol-
ume expansion front is negligible and only its effect on

the penetrant front needs to be discussed. These results

differ from those for a planar system [6,14], as they were

based on the assumption that the semi-infinite swelling-

control release drug system to be of unit thickness.

Therefore, the volume expansion front in the planar sys-

tem moves outwardly more quickly than that in an

spherical system.



Table 1

Comparisons of the time histories of positions of volume

expansion front, specified by R�
f , for various parameters e

(n = 1, �v ¼ 0:1, r�i ¼ 5)
Time t* Asymptotic

solution

Numerical solution

e = 0.01 e = 0.1 e = 1

0.0 5.0000000 5.0000000 5.0000000 5.0000000

0.5 5.0000107 5.0000136 5.0000502 5.0014360

1.0 5.0000192 5.0000238 5.0000838 5.0022411

1.5 5.0000265 5.0000328 5.0001123 5.0029000

2.0 5.0000333 5.0000409 5.0001383 5.0034932

2.5 5.0000396 5.0000486 5.0001632 5.0040517

3.0 5.0000457 5.0000560 5.0001874 5.0045914

3.5 5.0000516 5.0000632 5.0002116 5.0051218

4.0 5.0000573 5.0000703 5.0002360 5.0056500

4.5 5.0000631 5.0000774 5.0002610 5.0061811

5.0 5.0000687 5.0000845 5.0002869 5.0067196

5.5 5.0000745 5.0000918 5.0003140 5.0072697

6.0 5.0000803 5.0000993 5.0003428 5.0078354

6.5 5.0000863 5.0001071 5.0003739 5.0084211

7.0 5.0000925 5.0001154 5.0004079 5.0090315

7.5 5.0000991 5.0001243 5.0004462 5.0096720

8.0 5.0001063 5.0001342 5.0004903 5.0103491

8.5 5.0001143 5.0001458 5.0005433 5.0110707

9.0 5.0001240 5.0001603 5.0006110 5.0118472

The asymptotic solution is calculated from Eqs. (33) and (36) by

the Newton–Raphson method.
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Fig. 8. Complete time histories of the positions of the penetrant

front eR�
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When n = 0 and Eq. (29) or Eq. (36) is integrated, the

difference between the positions of the volume expansion

and the penetrant fronts of the spherical system is equal

to t* (R�
f0 � R�

i0 ¼ t�) at all times. If n = 1, e is small, and
the radius of sphere is large, then the interfacial differ-

ence between the positions of the volume expansion
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0.00
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10.00

r 
*
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_ 

=1

Fig. 7. Complete time histories of the positions of the penetrant

front, R�
i , and the volume expansion front, R

�
f , for different �v

(n = 1, e = 10, r�i ¼ 5). The lower and upper lines represent R�
i

and R�
f , respectively.
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t*
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Fig. 9. Complete time histories of the positions of the volume

expansion front R�
f with different r

�
i (n = 1, e = 1, �v ¼ 1).
and penetrant fronts over a long period is proportional

to t* (R�
f0 � R�

i0 ¼ t�). These results are consistent with
those for a planar system [6]. Figs. 10 and 11 represent

the penetrant and volume expansion fronts for three dif-

ferent values of n.

Fig. 12 displays the time history of the penetrant

velocity for various e. This figure indicates that increas-
ing the control parameter e decreases the penetrant
velocity. It also indicates that the velocity of the volume

expansion front increases with e (as observed in Fig. 6).
As e approaches zero, the inward penetrant velocity re-
mains constant over a longer period. Hence, the pene-

trant front take more time to reach the center of

sphere when e is large. The penetrant velocity decreases
with time. However, the penetrant velocity increases
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Fig. 10. Complete time histories of the positions of the

penetrant front r* with different n (r�i ¼ 5, e = 1, �v ¼ 1).
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Fig. 11. Complete time histories of the positions of the volume

expansion front R�
f with different n (r

�
i ¼ 5, e = 1, �v ¼ 1).
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Fig. 12. Complete time histories of the velocities of the

penetrant front R�
i with different e (n = 1, �v ¼ 1, r�i ¼ 5).
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again as the penetrant front approaches the center of

sphere.

From Eq. (44), the asymptotic drug release rate de-

pends on the control parameter e, radius of sphere, the
diffusion coefficients of the solvent and drug and the

penetrant velocity of the polymer front. Fig. 13 com-

pares the numerical solutions with the asymptotic solu-

tions for the drug release rate. When e is very small,
these two solutions are consistent with each other over

short periods. The drug release rate remains constant

over short periods. However, the asymptotic solution

is no longer useful for describing the behavior of the

drug release rate for large values of e over long periods.
A comparison between Figs. 12 and 13 shows that the
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Fig. 13. Complete time histories of the drug release rates with

different e (n = 1, �v ¼ 0:1, r�i ¼ 5). Dash lines are calculated
from Eq. (43).
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Fig. 14. Complete time histories of the drug release rates with

different n (e = 1, �v ¼ 0:1, r�i ¼ 5).
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different r�i (n = 1, e = 1, �v ¼ 0:1).
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drug release rate is similar to the penetrant velocity,

implying that the drug release rate is a function of the

penetrant velocity and e. The rate of the release of the
drug increases as the penetrant front approaches the

center of sphere. Figs. 14 and 15 show the effects of

the parameters n and r�i on the drug release rate.
6. Conclusion

This work proposes a local similarity method and

asymptotic method to simulate a free boundary problem

that involves swelling-controlled release pharmaceuti-

cals. This investigation has presented relevant analyses

theoretical investigations have been presented in this

study. The findings are summarized as follows:

(1) If the radius of the sphere is large enough, then the

numerical results approach the solutions for a pla-

nar system, as studied by Cohen and Erneux [6].

(2) Numerical solutions are useful for all e, whereas
asymptotic solutions are valid only for small e.

(3) If the radius of sphere is sufficiently large and small

e and �v are adopted, then the position of the volume
expansion front remains almost unchanged. If vol-

ume expansion effect is ignored, then the system

reduces to a one-way diffusion problem.

(4) The asymptotic drug release rate depends on the

control parameter, diffusion coefficients and the

velocity of penetrant. The drug release rate at all

times follows the velocity of the penetrant. The pen-
etrant velocity and the drug release rate increase as

the penetrant front penetrates closer to the center of

the sphere.
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